少しでも分かりやすく伝えたい逆ポーランド記法

少しでも分かりやすく伝えたい逆ポーランド記法

こんにちは、しゃねろんです。
今回は逆ポーランド記法について解説したいと思います!

逆ポーランド記法とは

逆ポーランド記法とは「1+2」の様な式があったとき、演算子(+)を後ろに、被演算子(1,2)を前に表記する記法で、別名後置記法とも言います。

逆ポーランド記法の表現方法

例として

「(3+2)*(10-2)」

という式があったとき、まずカッコ内を逆ポーランド記法に変換していきます。この時、真ん中にある「*」は一旦無視して頂いて構いません。

逆ポーランド記法
変換1

ここが最も重要です。

次に変換した「(3 2 +)」と「(10 2 -)」を何かしらの変数に置き換えます。今回は「(3 2 +)」を「A」に、「(10 2 -)」を「B」と置き換えて行きます。

逆ポーランド記法
変換2

置き換えて出来た「A*B」を最初と同様に逆ポーランド記法に変換していくと「A B *」となります。

逆ポーランド記法
変換3

最後に置き換えた「A」と「B」を元に戻します。

逆ポーランド記法
変換4

これで逆ポーランド記法に変換することができました。

逆ポーランド記法の計算方法

今回は上記で用いた「(3+2)*(10-2)」という式を基にして計算していきます。
ポーランド記法を用いずに計算を行っていくと、
(3+2)=5、(10-2)=8、5*8=40となり、計算結果は40となりますね。
次に逆ポーランド記法で計算していきます。
ここでの考え方として重要なのはスタックに当てはめて計算していくことです。
大まかな計算方法としては、
数字の時は常にスタック

演算子が来たらスタックされている数値をその演算子で計算する

計算した結果をスタック

次の演算子が来るまでスタック

これを繰り返すだけです。

上記で変換した式と同じ式なので逆ポーランドの手順は省略しますが、「(3+2)*(10-2)」を変換すると「3 2 + 10 2 -」となります。

「3」と「2」は被演算子なのでそのままスタックします。

逆ポーランド記法
スタック1

「3」と「2」がスタックされた後、「+」が入りますが、演算子が来た場合はスタックされた2つの被演算子で計算を行うため「3+2=5」となり、計算結果の「5」がスタックされます。

逆ポーランド記法
スタック2

次は「10」と「2」がスタックされます。演算子もないのでそのままスタックされます。

逆ポーランド記法
スタック3

次に「-」が来るので直前の2つの被演算子「10」と「2」を減算し、「10-2=8」となり計算結果の「8」がスタックされます。

逆ポーランド記法
スタック4

最後に「*」が来るので今までと同様計算を行い、「5*8=40」となり結果が40と分かります。

逆ポーランド記法
スタック5

逆ポーランド記法をするメリット

逆ポーランド記法をすることによるメリットはコンピュータで計算する上で非常に便利だからです。

計算方法も演算子が来るまでは値をスタックし、演算子が来たら演算を行いその結果をスタックするだけなので計算手順も簡易的で処理が行いやすいからです。

まとめ

演算子(+,-,*,/)は後ろ、被演算子(1,2,3,4,5,6,7,8,9,0)は前において括弧でくくられていたら何かしらの変数に置き換える。

これさえできれば、逆ポーランド記法は問題なく変換することができます。

テーマ

現在使用中テーマは最新版

v.1.0v.2.0v.3.0v.3.1v.3.2v.3.3v.3.4v.3.5v.3.6v.3.7v.3.8v.shaneron選択しない(安定版)